Journal of Lipid Research (Sep 1970)

Reductive and oxidative biosynthesis of plasmalogens in myelinating brain

  • HARALD H.O. SCHMID,
  • TAKASHI TAKAHASHI

Journal volume & issue
Vol. 11, no. 5
pp. 412 – 419

Abstract

Read online

Palmitic acid-1-14C and hexadecanol-1-14C were administered intracerebrally to 18-day-old rats. Incorporation of radioactivity into the constituent alkyl, alk-1-enyl, and 1-acyl moieties, as well as into the 2-acyl moieties, of the ethanolamine phosphatides of brain was determined after 1, 2, 3, 6, and 22 hr. Incorporation of radioactivity from hexadecanol into both alkyl ethers and alk-1-enyl ethers proceeded at a rate more than 10 times higher than from palmitic acid. Hexadecanol was rapidly oxidized to fatty acids which were incorporated into the acyl moieties of the ethanolamine phosphatides. When palmitic acid was used as a precursor, labeled long-chain alcohols could be isolated from the lipid extract. As labeled long-chain aldehydes could not be detected in any of the lipid extracts, alcohols appear to be key intermediates for the biosynthesis of both alkyl and alk-1-enyl glycerophosphatides.

Keywords