Scientific Reports (Dec 2023)

COVID-19 infection segmentation using hybrid deep learning and image processing techniques

  • Samar Antar,
  • Hussein Karam Hussein Abd El-Sattar,
  • Mohammad H. Abdel-Rahman,
  • Fayed F. M. Ghaleb

DOI
https://doi.org/10.1038/s41598-023-49337-1
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 17

Abstract

Read online

Abstract The coronavirus disease 2019 (COVID-19) epidemic has become a worldwide problem that continues to affect people’s lives daily, and the early diagnosis of COVID-19 has a critical importance on the treatment of infected patients for medical and healthcare organizations. To detect COVID-19 infections, medical imaging techniques, including computed tomography (CT) scan images and X-ray images, are considered some of the helpful medical tests that healthcare providers carry out. However, in addition to the difficulty of segmenting contaminated areas from CT scan images, these approaches also offer limited accuracy for identifying the virus. Accordingly, this paper addresses the effectiveness of using deep learning (DL) and image processing techniques, which serve to expand the dataset without the need for any augmentation strategies, and it also presents a novel approach for detecting COVID-19 virus infections in lung images, particularly the infection prediction issue. In our proposed method, to reveal the infection, the input images are first preprocessed using a threshold then resized to 128 × 128. After that, a density heat map tool is used for coloring the resized lung images. The three channels (red, green, and blue) are then separated from the colored image and are further preprocessed through image inverse and histogram equalization, and are subsequently fed, in independent directions, into three separate U-Nets with the same architecture for segmentation. Finally, the segmentation results are combined and run through a convolution layer one by one to get the detection. Several evaluation metrics using the CT scan dataset were used to measure the performance of the proposed approach in comparison with other state-of-the-art techniques in terms of accuracy, sensitivity, precision, and the dice coefficient. The experimental results of the proposed approach reached 99.71%, 0.83, 0.87, and 0.85, respectively. These results show that coloring the CT scan images dataset and then dividing each image into its RGB image channels can enhance the COVID-19 detection, and it also increases the U-Net power in the segmentation when merging the channel segmentation results. In comparison to other existing segmentation techniques employing bigger 512 × 512 images, this study is one of the few that can rapidly and correctly detect the COVID-19 virus with high accuracy on smaller 128 × 128 images using the metrics of accuracy, sensitivity, precision, and dice coefficient.