Journal of Mathematics (Jan 2021)
Computing FGZ Index of Sum Graphs under Strong Product
Abstract
Topological index (TI) is a function that assigns a numeric value to a (molecular) graph that predicts its various physical and structural properties. In this paper, we study the sum graphs (S-sum, R-sum, Q-sum and T-sum) using the subdivision related operations and strong product of graphs which create hexagonal chains isomorphic to many chemical compounds. Mainly, the exact values of first general Zagreb index (FGZI) for four sum graphs are obtained. At the end, FGZI of the two particular families of sum graphs are also computed as applications of the main results. Moreover, the dominating role of the FGZI among these sum graphs is also shown using the numerical values and their graphical presentations.