LEAFY homeostasis is regulated via ubiquitin-dependent degradation and sequestration in cytoplasmic condensates
Ulla Dolde,
Fernando Muzzopappa,
Charlotte Delesalle,
Julie Neveu,
Fabian Erdel,
Grégory Vert
Affiliations
Ulla Dolde
Plant Science Research Laboratory (LRSV), UMR5546 CNRS/University of Toulouse/Toulouse-INP, 24 chemin de Borde Rouge, 31320 Auzeville Tolosane, France
Fernando Muzzopappa
Center for Integrative Biology (CBI), Molecular, Cellular and Developmental Biology UMR5077 CNRS/University of Toulouse, 169 Avenue Marianne Grunberg-Manago, 31062 Toulouse Cedex, France
Charlotte Delesalle
Plant Science Research Laboratory (LRSV), UMR5546 CNRS/University of Toulouse/Toulouse-INP, 24 chemin de Borde Rouge, 31320 Auzeville Tolosane, France
Julie Neveu
Plant Science Research Laboratory (LRSV), UMR5546 CNRS/University of Toulouse/Toulouse-INP, 24 chemin de Borde Rouge, 31320 Auzeville Tolosane, France
Fabian Erdel
Center for Integrative Biology (CBI), Molecular, Cellular and Developmental Biology UMR5077 CNRS/University of Toulouse, 169 Avenue Marianne Grunberg-Manago, 31062 Toulouse Cedex, France; Corresponding author
Grégory Vert
Plant Science Research Laboratory (LRSV), UMR5546 CNRS/University of Toulouse/Toulouse-INP, 24 chemin de Borde Rouge, 31320 Auzeville Tolosane, France; Corresponding author
Summary: The transcription factor LEAFY (LFY) plays crucial roles in flower development by activating floral homeotic genes. Activation of LFY targets requires the combined action of LFY and the E3 ubiquitin ligase UFO, although the precise underlying mechanism remains unclear. Here, we show that LFY accumulates in biomolecular condensates within the cytoplasm, while recombinant LFY forms condensates with similar properties in vitro. UFO interacts with LFY within these condensates and marks it for degradation. LFY levels in the nucleus are buffered against changes in total LFY levels induced by proteasome inhibition, UFO overexpression, or mutation of lysine residues in a disordered region of LFY. Perturbation of cytoplasmic LFY condensates by 1,6-hexanediol treatment induces the relocalization of LFY to the nucleus and the subsequent activation of the LFY target AP3 in flowers. Our data suggest that nucleocytoplasmic partitioning, condensation, and ubiquitin-dependent degradation regulate LFY levels in the nucleus to control its activity.