Моделирование и анализ информационных систем (Sep 2011)

On the Lassak Conjecture for a Convex Body

  • M. V. Nevskii

Journal volume & issue
Vol. 18, no. 3
pp. 5 – 11

Abstract

Read online

In 1993 M. Lassak formulated (in the equivalent form) the following conjecture. If we can inscribe a translate of the cube $[0,1]^n$ into a convex body $C \subset R^n$, then $\sum_{i=1}^n \frac{1}{\omega_i} \geq 1$. Here $\omega_i$ denotes the width of $C$ in the direction of the ith coordinate axis. The paper contains a new proof of this statement for n = 2. Also we show that if a translate of $[0,1]^n$ can be inscribed into the n-dimensional simplex, then for this simplex holds $\sum_{i=1}^n \frac{1}{\omega_i} = 1$.

Keywords