Applied Sciences (Sep 2024)
Infrared Dim and Small Target Detection Based on Local–Global Feature Fusion
Abstract
Infrared detection, known for its robust anti-interference capabilities, performs well in all weather conditions and various environments. Its applications include precision guidance, surveillance, and early warning systems. However, detecting infrared dim and small targets presents challenges, such as weak target features, blurred targets with small area percentages, missed detections, and false alarms. To address the issue of insufficient target feature information, this paper proposes a high-precision method for detecting dim and small infrared targets based on the YOLOv7 network model, which integrates both local and non-local bidirectional features. Additionally, a local feature extraction branch is introduced to enhance target information by applying local magnification at the feature extraction layer allowing for the capture of more detailed features. To address the challenge of target and background blending, we propose a strategy involving multi-scale fusion of the local branch and global feature extraction. Additionally, the use of a 1 × 1 convolution structure and concat operation reduces model computation. Compared to the baseline, our method shows a 2.9% improvement in mAP50 on a real infrared dataset, with the detection rate reaching 93.84%. These experimental results underscore the effectiveness of our method in extracting relevant features while suppressing background interference in infrared dim and small target detection (IDSTD), making it more robust.
Keywords