Microorganisms (Jan 2025)

Probiotic Supplementation Alleviates Corticosterone-Induced Fatty Liver Disease by Regulating Hepatic Lipogenesis and Increasing Gut Microbiota Diversity in Broilers

  • Yuyan Feng,
  • Wenqing Mei,
  • Qu Chen,
  • Xiaojing Chen,
  • Yingdong Ni,
  • Mingming Lei,
  • Jie Liu

DOI
https://doi.org/10.3390/microorganisms13010200
Journal volume & issue
Vol. 13, no. 1
p. 200

Abstract

Read online

Emerging evidence indicates a close relationship between gut microbiota and fatty liver disease. It has been suggested that gut microbiota modulation with probiotics ameliorates fatty liver disease in rodents and humans, yet it remains unclear whether the same results will also be obtained in poultry. The aim of this study was to investigate whether a mixture of probiotics supplemented after hatching can prevent CORT-induced fatty liver disease in broilers, and to determine how such effects, if any, are associated with hepatic de novo lipogenesis and gut microbiota composition. Ninety-six one-day-old green-legged chickens were divided into a control group (CON) and probiotic group (PB). At 28 days of age, fatty liver was induced in 16 broilers that were randomly selected from the CON or PB group. At the end of the experiment, broilers from four groups, (i) the control group (CON), (ii) corticosterone group (CORT), (iii) probiotic group (PB), and (iv) PB plus CORT group (CORT&PB), were slaughtered for sampling and analysis. The results showed that probiotic administration significantly prevented CORT-induced body weight loss (p p SREBP1) and acetyl-CoA carboxylase (ACC) mRNA (p p = 0.06). The cecal microbiota composition was determined by 16S rRNA high-throughput sequencing. The results showed that CORT treatment induced distinct gut microbiota alterations with a decrease in microbial diversity and an increase in Proteobacteria abundance (p p > 0.05), as well as the abundance of Intestinimonas (p < 0.05). Our results indicate that CORT treatment induced severe fatty liver disease and altered the gut microbiota composition in broilers. However, post-hatching probiotic supplementation had a beneficial effect on alleviating fatty liver disease by regulating lipogenic gene expression and increasing gut microbiota diversity and the abundance of beneficial bacteria. We demonstrate for the first time that the supplementation of probiotics to chicks had a beneficial effect on preventing fatty liver disease through regulating lipogenic gene expression and improving the gut microbial balance. Thus, our results indicate that probiotics are a potential nutritional agent for preventing fatty liver disease in chickens.

Keywords