Remote Sensing (Aug 2021)

Generalized Dechirp-Keystone Transform for Radar High-Speed Maneuvering Target Detection and Localization

  • Jibin Zheng,
  • Kangle Zhu,
  • Zhiyong Niu,
  • Hongwei Liu,
  • Qing Huo Liu

DOI
https://doi.org/10.3390/rs13173367
Journal volume & issue
Vol. 13, no. 17
p. 3367

Abstract

Read online

The multivariate range function of the high-speed maneuvering target induces modulations on both the envelop and phase, i.e., the range cell migration (RCM) and Doppler frequency migration (DFM) which degrade the long-time coherent integration used for detection and localization. To solve this problem, many long-time coherent integration methods have been proposed. Based on mechanisms of typical methods, this paper names two signal processing modes, i.e., processing unification (PU) mode and processing separation (PS) mode, and presents their general forms. Thereafter, based on the principle of the PS mode, a novel long-time coherent integration method, known as the generalized dechirp-keystone transform (GDKT), is proposed for radar high-speed maneuvering target detection and localization. The computational cost, energy integration, peak-to-sidelobe level (PSL), resolution, and anti-noise performance of the GDKT are analyzed and compared with those of the maximum likelihood estimation (MLE) method and keystone transform-dechirp (KTD) method. With mathematical analyses and numerical simulations, we validate two main superiorities of the GDKT, including (1) the statistically optimal anti-noise performance, and (2) the low computational cost. The real radar data is also used to validate the GDKT. It is worthwhile noting that, based on closed analytical formulae of the MLE method, KTD method, and GDKT, several doubts in radar high-speed maneuvering target detection and localization are mathematically interpreted, such as the blind speed sidelobe (BSSL) and the relationship between the PU and PS modes.

Keywords