Semina: Ciências Exatas e Tecnológicas (Apr 2021)
Previsão com séries temporais usando ARIMA para modelagem de crescimento de glioma em resposta à radioterapia
Abstract
Atualmente, o crescente número de pessoas que sofrem de câncer tem sido um grande motivo de preocupação em todo o mundo. Os glioblastomas, em particular, são tumores primários em células gliais localizadas no sistema nervoso central. Por conta dessa localização sensível, modelos matemáticos têm sido estudados e desenvolvidos como ferramentas alternativas para análise das taxas de crescimento tumoral, auxiliando na tomada de decisão quanto à dosagem do tratamento, sem expor a vida do paciente. Este artigo apresenta dois modelos de séries temporais para estimar a taxa de crescimento do glioblastoma em resposta ao tratamento com radioterapia ionizante. Os resultados obtidos indicam que os métodos de séries temporais propostos obtém previsões com Mean Absolute Percentual Error (MAPE) de aproximadamente 1% e 4%, e as simulações mostram que o método ARIMA supera o método de Holt com base no Mean Square Error (MSE) e MAPE. Além disso, os resultados mostram que o método das séries temporais é aplicável a dados de dois modelos matemáticos diferentes para o crescimento de glioblastoma
Keywords