Applied Sciences (Sep 2020)
Recognition of Hand Gesture Sequences by Accelerometers and Gyroscopes
Abstract
The objective of this study is to present novel neural network (NN) algorithms and systems for sensor-based hand gesture recognition. The algorithms are able to classify accurately a sequence of hand gestures from the sensory data produced by accelerometers and gyroscopes. They are the extensions from the PairNet, which is a Convolutional Neural Network (CNN) capable of carrying out simple pairing operations with low computational complexities. Three different types of feedforward NNs, termed Residual PairNet, PairNet with Inception, and Residual PairNet with Inception are proposed for the extension. They are the PairNet operating in conjunction with short-cut connections and/or inception modules for achieving high classification accuracy and low computation complexity. A prototype system based on smart phones for remote control of home appliances has been implemented for the performance evaluation. Experimental results reveal that the PairNet has superior classification accuracy over its basic CNN and Recurrent NN (RNN) counterparts. Furthermore, the Residual PairNet, PairNet with Inception, and Residual PairNet with Inception are able to further improve classification hit rate and/or reduce recognition time for hand gesture recognition.
Keywords