PLoS ONE (Jan 2018)

Simulating direct shear tests with the Bullet physics library: A validation study.

  • Ehsan Izadi,
  • Adam Bezuijen

DOI
https://doi.org/10.1371/journal.pone.0195073
Journal volume & issue
Vol. 13, no. 4
p. e0195073

Abstract

Read online

This study focuses on the possible uses of physics engines, and more specifically the Bullet physics library, to simulate granular systems. Physics engines are employed extensively in the video gaming, animation and movie industries to create physically plausible scenes. They are designed to deliver a fast, stable, and optimal simulation of certain systems such as rigid bodies, soft bodies and fluids. This study focuses exclusively on simulating granular media in the context of rigid body dynamics with the Bullet physics library. The first step was to validate the results of the simulations of direct shear testing on uniform-sized metal beads on the basis of laboratory experiments. The difference in the average angle of mobilized frictions was found to be only 1.0°. In addition, a very close match was found between dilatancy in the laboratory samples and in the simulations. A comprehensive study was then conducted to determine the failure and post-failure mechanism. We conclude with the presentation of a simulation of a direct shear test on real soil which demonstrated that Bullet has all the capabilities needed to be used as software for simulating granular systems.