Frontiers in Oncology (May 2022)

OGG1 Inhibition Triggers Synthetic Lethality and Enhances The Effect of PARP Inhibitor Olaparib in BRCA1-Deficient TNBC Cells

  • Juan Miguel Baquero,
  • Erik Marchena-Perea,
  • Rocío Mirabet,
  • Raúl Torres-Ruiz,
  • Raúl Torres-Ruiz,
  • Carmen Blanco-Aparicio,
  • Sandra Rodríguez-Perales,
  • Thomas Helleday,
  • Thomas Helleday,
  • Carlos Benítez-Buelga,
  • Javier Benítez,
  • Javier Benítez,
  • Ana Osorio,
  • Ana Osorio,
  • Ana Osorio

DOI
https://doi.org/10.3389/fonc.2022.888810
Journal volume & issue
Vol. 12

Abstract

Read online

BackgroundPARP1 plays a critical role in the base excision repair (BER) pathway, and PARP1 inhibition leads to specific cell death, through a synthetic lethal interaction, in the context of BRCA1/2 deficiency. To date, up to five different PARP inhibitors (PARPi), have been approved, nevertheless, the acquisition of resistance to PARPi is common and there is increasing interest in enhancing responses and expand their use to other tumour types.MethodsWe hypothesized that other BER members could be additional synthetic lethal partners with mutated BRCA genes. To test this, we decided to evaluate the glycosylase OGG1 as a potential candidate, by treating BRCA1 proficient and deficient breast cancer cells with PARPi olaparib and the OGG1 inhibitor TH5478.ResultsKnocking out BRCA1 in triple-negative breast cancer cell lines causes hypersensitivity to the OGG1 inhibitor TH5487. Besides, TH5487 enhances the sensitivity to the PARP inhibitor olaparib, especially in the context of BRCA1 deficiency, reflecting an additive interaction.DiscussionThese results provide the first evidence that OGG1 inhibition is a promising new synthetic lethality strategy in BRCA1-deficient cells, and could lead to a new framework for the treatment of hereditary breast and ovarian cancer.

Keywords