Enhanced Supercapacitor and Cycle-Life Performance: Self-Supported Nanohybrid Electrodes of Hydrothermally Grown MnO<sub>2</sub> Nanorods on Carbon Nanotubes in Neutral Electrolyte
Soraya Bouachma,
Xiaoying Zheng,
Alonso Moreno Zuria,
Mohamed Kechouane,
Noureddine Gabouze,
Mohamed Mohamedi
Affiliations
Soraya Bouachma
Centre Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel Boulet, Varennes, QC J3X 1S2, Canada
Xiaoying Zheng
Centre Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel Boulet, Varennes, QC J3X 1S2, Canada
Alonso Moreno Zuria
Centre Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel Boulet, Varennes, QC J3X 1S2, Canada
Mohamed Kechouane
Laboratory of Material Physics, Faculty of Physics, University of Science and Technology Houari Boumediene (U.S.T.H.B.), P.O. Box 32, El-Alia, Bab Ezzouar, Algiers DZ-16111, Algeria
Noureddine Gabouze
Centre de Recherche en Technologie des Semi-Conducteurs Pour l’Énergétique (CRTSE), Bd Frantz Fanon, P.O. Box 140, Alger-7 Merveilles, Algiers DZ-16038, Algeria
Mohamed Mohamedi
Centre Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel Boulet, Varennes, QC J3X 1S2, Canada
Efficient and sustainable energy storage remains a critical challenge in the advancement of energy technologies. This study presents the fabrication and electrochemical evaluation of a self-supporting electrode material composed of MnO2 nanorods grown directly on a carbon paper and carbon nanotube (CNT) substrate using a hydrothermal method. The resulting CNT/MnO2 electrodes exhibit a unique structural architecture with a high surface area and a three-dimensional hierarchical arrangement, contributing to a substantial electrochemical surface area. Electrochemical testing reveals remarkable performance characteristics, including a specific capacitance of up to 316.5 F/g, which is 11 times greater than that of conventional CP/MnO2 electrodes. Moreover, the CNT/MnO2 electrodes demonstrate outstanding retention capacity, exhibiting a remarkable 165% increase over 10,000 cycles. Symmetric supercapacitor devices utilizing CNT/MnO2 electrodes maintain a large voltage window of 3 V and a specific capacitance as high as 200 F/g. These results underscore the potential of free-standing CNT/MnO2 electrodes to advance the development of high-performance supercapacitors, which can be crucial for efficient and sustainable energy storage solutions in various industrial and manufacturing applications.