ISPRS International Journal of Geo-Information (Jun 2024)
A Type of Scale-Oriented Terrain Pattern Derived from Normalized Topographic Relief Layers and Its Interpretation
Abstract
Topographic scale characteristics contain valuable information for interpreting landform structures, which is crucial for understanding the spatial differentiation of landforms across large areas. However, the absence of parameters that specifically describe the topographic scale characteristics hinders the quantitative representation of regional topography from the perspective of spatial scales. In this study, false-color composite images were generated using normalized topographic relief data, showing a type of scale-oriented terrain pattern. Subsequent analysis indicated a direct correlation between the luminance of the patterns and the normalized topographic relief. Additionally, a linear correlation exists between the color of the patterns and the change rate in normalized topographic relief. Based on the analysis results, the issue of characterizing topographic scale effects was transformed into a problem of interpreting terrain patterns. The introduction of two parameters, flux and curl of topographic field, allowed for the interpretation of the terrain patterns. The assessment indicated that the calculated values of topographic field flux are equivalent to the luminance of the terrain patterns and the variations in the topographic field curl correspond with the spatial differentiation of colors in the terrain patterns. This study introduced a new approach to analyzing topographic scale characteristics, providing a pathway for quantitatively describing scale effects and automatically classifying landforms at a regional scale. Through exploratory analysis on artificially constructed simple DEMs and verification in four typical geomorphological regions of real terrain, it was shown that the terrain pattern method has better intuitiveness than the scale signature approach. It can reflect the scale characteristics of terrain in continuous space. Compared to the MTPCC image, the terrain parameters derived from the terrain pattern method further quantitatively describe the scale effects of the terrain.
Keywords