Scientific Reports (Aug 2024)

Efficacy of Saccharomyces yeast postbiotics on cell turnover, immune responses, and oxidative stress in the jejunal mucosa of young pigs

  • Marcos Elias Duarte,
  • Sung Woo Kim

DOI
https://doi.org/10.1038/s41598-024-70399-2
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 10

Abstract

Read online

Abstract This study aimed to determine the effects of Saccharomyces yeast postbiotics on cell turnover, immune responses, and oxidative stress in the jejunal mucosa of pigs. Thirty-two newly weaned pigs at 6.05 ± 0.24 kg were assigned to two dietary treatments based on a randomized complete block design. The treatments were control group receiving a basal diet and a group supplemented with Saccharomyces yeast postbiotics (175 g/ton diet) in the basal diet. After 35 d of the study, pigs were euthanized and jejunal mucosa were collected to assess immune status, oxidative stress, barrier markers, cell proliferation, and apoptosis. Saccharomyces yeast postbiotics reduced (P < 0.05) the fecal score from d 3 to d 7 and tended to increase the gene expression of interferon-γ (IFN-γ) (P = 0.071) and mammalian/mechanistic target of rapamycin (mTOR) (P = 0.080), decrease the gene expression of B-cell lymphoma 2-associated X protein 1 (BAX1) (P < 0.05), tended to decrease the gene expression of serum and glucocorticoid-induced protein kinase 1 (SGK1) (P = 0.066), increased (P < 0.05) cell proliferation in the crypts, and tended to increase the villus height (P = 0.078) and crypt depth (P = 0.052) in the jejunum. In conclusion, the supplementation of Saccharomyces yeast postbiotics in nursery diets reduced diarrhea within the first week after weaning and provided protection to the villi in the jejunum by enhancing the immune responses of nursery pigs, promoting crypt cell proliferation, and reducing the expression of genes associated with apoptosis without affecting inflammatory and oxidative stress status in the jejunum of the nursery pigs.

Keywords