Frontiers in Psychiatry (Nov 2023)
The effect of multisensory semantic congruency on unisensory object recognition in schizophrenia
Abstract
Multisensory, as opposed to unisensory processing of stimuli, has been found to enhance the performance (e.g., reaction time, accuracy, and discrimination) of healthy individuals across various tasks. However, this enhancement is not as pronounced in patients with schizophrenia (SZ), indicating impaired multisensory integration (MSI) in these individuals. To the best of our knowledge, no study has yet investigated the impact of MSI deficits in the context of working memory, a domain highly reliant on multisensory processing and substantially impaired in schizophrenia. To address this research gap, we employed two adopted versions of the continuous object recognition task to investigate the effect of single-trail multisensory encoding on subsequent object recognition in 21 schizophrenia patients and 21 healthy controls (HC). Participants were tasked with discriminating between initial and repeated presentations. For the initial presentations, half of the stimuli were audiovisual pairings, while the other half were presented unimodal. The task-relevant stimuli were then presented a second time in a unisensory manner (either auditory stimuli in the auditory task or visual stimuli in the visual task). To explore the impact of semantic context on multisensory encoding, half of the audiovisual pairings were selected to be semantically congruent, while the remaining pairs were not semantically related to each other. Consistent with prior studies, our findings demonstrated that the impact of single-trial multisensory presentation during encoding remains discernible during subsequent object recognition. This influence could be distinguished based on the semantic congruity between the auditory and visual stimuli presented during the encoding. This effect was more robust in the auditory task. In the auditory task, when congruent multisensory pairings were encoded, both participant groups demonstrated a multisensory facilitation effect. This effect resulted in improved accuracy and RT performance. Regarding incongruent audiovisual encoding, as expected, HC did not demonstrate an evident multisensory facilitation effect on memory performance. In contrast, SZs exhibited an atypically accelerated reaction time during the subsequent auditory object recognition. Based on the predictive coding model we propose that this observed deviations indicate a reduced semantic modulatory effect and anomalous predictive errors signaling, particularly in the context of conflicting cross-modal sensory inputs in SZ.
Keywords