International Journal of Polymer Science (Jan 2015)

Thermal Degradation and Damping Characteristic of UV Irradiated Biopolymer

  • Anika Zafiah M. Rus,
  • Nik Normunira Mat Hassan

DOI
https://doi.org/10.1155/2015/615284
Journal volume & issue
Vol. 2015

Abstract

Read online

Biopolymer made from renewable material is one of the most important groups of polymer because of its versatility in application. In this study, biopolymers based on waste vegetable oil were synthesized and cross-link with commercial polymethane polyphenyl isocyanate (known as BF). The BF was compressed by using hot compression moulding technique at 90°C based on the evaporation of volatile matter, known as compress biopolymer (CB). Treatment with titanium dioxide (TiO2) was found to affect the physical property of compressed biopolymer composite (CBC). The characterization of thermal degradation, activation energy, morphology structure, density, vibration, and damping of CB were determined after UV irradiation exposure. This is to evaluate the photo- and thermal stability of the treated CB or CBC. The vibration and damping characteristic of CBC samples is significantly increased with the increasing of UV irradiation time, lowest thickness, and percentages of TiO2 loading at the frequency range of 15–25 Hz due to the potential of the sample to dissipate energy during the oscillation harmonic system. The damping property of CBC was improved markedly upon prolonged exposure to UV irradiation.