International Journal of Health Geographics (Apr 2005)

Assessing spatio-temporal variability of risk surfaces using residential history data in a case control study of breast cancer

  • Vena John E,
  • Nie Jing,
  • Bonner Matthew R,
  • Rogerson Peter A,
  • Han Daikwon,
  • Muti Paola,
  • Trevisan Maurizio,
  • Freudenheim Jo L

DOI
https://doi.org/10.1186/1476-072X-4-9
Journal volume & issue
Vol. 4, no. 1
p. 9

Abstract

Read online

Abstract Background Most analyses of spatial clustering of disease have been based on either residence at the time of diagnosis or current residence. An underlying assumption in these analyses is that residence can be used as a proxy for environmental exposure. However, exposures earlier in life and not just those in the most recent period may be of significance. In breast cancer, there is accumulating evidence that early life exposures may contribute to risk. We explored spatio-temporal patterns of risk surfaces using data on lifetime residential history in a case control study of breast cancer, and identified elevated areas of risk and areas potentially having more exposure opportunities, defined as risk surfaces in this study. This approach may be more relevant in understanding the environmental etiology of breast cancer, since lifetime cumulative exposures or exposures at critical times may be more strongly associated with risk for breast cancer than exposures from the recent period. Results A GIS-based exploratory spatial analysis was applied, and spatio-temporal variability of those risk surfaces was evaluated using the standardized difference in density surfaces between cases and controls. The significance of the resulting risk surfaces was tested and reported as p-values. These surfaces were compared for premenopausal and postmenopausal women, and were obtained for each decade, from the 1940s to 1990s. We found strong evidence of clustering of lifetime residence for premenopausal women (for cases relative to controls), and a less strong suggestion of such clustering for postmenopausal women, and identified a substantial degree of temporal variability of the risk surfaces. Conclusion We were able to pinpoint geographic areas with higher risk through exploratory spatial analyses, and to assess temporal variability of the risk surfaces, thus providing a working hypothesis on breast cancer and environmental exposures. Geographic areas with higher case densities need further epidemiologic investigation for potential relationships between lifetime environmental exposures and breast cancer risk. Examination of lifetime residential history provided additional information on geographic areas associated with higher risk; limiting exploration of chronic disease clustering to current residence may neglect important relationships between location and disease.