Journal of Orthopaedic Surgery and Research (Dec 2019)
The combination of microfracture with induction of Wnt / β- Catenin pathway, leads to enhanced cartilage regeneration
Abstract
Abstract Introduction Microfracture does not lead to complete healing of full-thickness cartilage defects. The aim of this study was to evaluate the effect of modifying Wnt/β-catenin signaling following microfracture, on the restoration of a full-thickness cartilage defect in a rabbit model. The modification of the canonical Wnt pathway was achieved through per os administration of lithium carbonate, which is an intracellular inhibitor of glycogen synthase kinase 3-β (Gsk3-β) and therefore induces Wnt/β-catenin signaling. Materials and methods Full-thickness cartilage defects of 4 mm in diameter were created in the patellar groove of the right femurs of 18 male New Zealand white rabbits. The rabbits were divided into three groups of six (n = 6) based on post-surgery treatment differences, as follows: microfracture only (group 1), microfracture plus lithium carbonate 7 mM in the drinking water for 1 week (group 2), microfracture plus lithium carbonate 7 mM in the drinking water for 4 weeks (group 3). All animals were sacrificed 9 weeks after surgery. The outcome was assessed histologically, by using the International Cartilage Repair Society (ICRS) visual histological scale. Immunohistochemistry for type II collagen was also conducted. Results Statistical analysis of the histological ICRS scores showed that group 3 was significantly superior to group 1 in four out of six ICRS categories, while group 2 was superior to 1 in only two out of six. Conclusion The combination of microfracture and systematic administration of lithium carbonate 7 mM for 4 weeks shows statistically significant superiority in four out of six ICRS categories compared with microfracture only for the treatment of full-thickness cartilage defects in a rabbit experimental model.
Keywords