Stem Cell Research & Therapy (Mar 2022)

Integrative analysis reveals a lineage-specific circular RNA landscape for adipo-osteogenesis of human mesenchymal stem cells

  • Hai-Bo Huang,
  • Hai-Tao Luo,
  • Na-Na Wei,
  • Miao-Ling Liu,
  • Fei He,
  • Wei Yang,
  • Jun Dong,
  • Xiao-Fei Yang,
  • Fu-Rong Li

DOI
https://doi.org/10.1186/s13287-022-02792-5
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background The balance between osteogenesis and adipogenesis of mesenchymal stem cells (MSCs) is critical to skeletal development and diseases. As a research hotspot, circular RNAs (circRNAs) have expanded our understanding of a hidden layer of the transcriptome. Yet, their roles during adipo-osteogenesis remain poorly described. Methods The identity of human MSCs derived from bone marrow and adipose were first determined by flow cytometry, cellular staining, and quantitative polymerase chain reaction (qPCR). Multi-strategic RNA-sequencing was performed using Poly A, RiboMinus and RiboMinus/RNase R methods. Integrative analysis was performed to identify lineage-specific expressed circRNAs. The structural and expressional characteristics were identified by Sanger sequencing and qPCR, respectively. The regulatory effects of adipogenesis-specific circ-CRLF1 were confirmed using siRNA transcfection and qPCR. Results We generated a whole transcriptome map during adipo-osteogenesis based on 10 Poly A, 20 RiboMinus and 20 RiboMinus/ RNase R datasets. A total of 31,326 circRNAs were identified and quantified from ~ 3.4 billion paired-end reads. Furthermore, the integrative analysis revealed that 1166 circRNA genes exhibited strong lineage-specific expression patterns. Their host genes were enriched in distinct biological functions, such as cell adhesion, cytokine signaling, and cell division. We randomly selected and validated the back-spliced junction sites and expression patterns of 12 lineage-specific circRNAs. Functional analysis indicated that circ-CRLF1 negatively regulated adipogenesis. Conclusions Our integrative analysis reveals an accurate and generally applicable lineage-specific circRNA landscape for adipo-osteogenesis of MSCs and provides a potential therapeutic target, circ-CRLF1, for the treatment of skeleton-related disease.

Keywords