Scientific Reports (Oct 2024)

Enhancing diffusion-weighted prostate MRI through self-supervised denoising and evaluation

  • Laura Pfaff,
  • Omar Darwish,
  • Fabian Wagner,
  • Mareike Thies,
  • Nastassia Vysotskaya,
  • Julian Hossbach,
  • Elisabeth Weiland,
  • Thomas Benkert,
  • Cornelius Eichner,
  • Dominik Nickel,
  • Tobias Wuerfl,
  • Andreas Maier

DOI
https://doi.org/10.1038/s41598-024-75007-x
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique that provides information about the Brownian motion of water molecules within biological tissues. DWI plays a crucial role in stroke imaging and oncology, but its diagnostic value can be compromised by the inherently low signal-to-noise ratio (SNR). Conventional supervised deep learning-based denoising techniques encounter challenges in this domain as they necessitate noise-free target images for training. This work presents a novel approach for denoising and evaluating DWI scans in a self-supervised manner, eliminating the need for ground-truth data. By leveraging an adapted version of Stein’s unbiased risk estimator (SURE) and exploiting a phase-corrected combination of repeated acquisitions, we outperform both state-of-the-art self-supervised denoising methods and conventional non-learning-based approaches. Additionally, we demonstrate the applicability of our proposed approach in accelerating DWI scans by acquiring fewer image repetitions. To evaluate denoising performance, we introduce a self-supervised methodology that relies on analyzing the characteristics of the residual signal removed by the denoising approaches.