Botanica Serbica (Apr 2021)

Alterations in the root proteomes of Brassica napus cultivars under salt stress

  • Hakan Terzi,
  • Mustafa Yıldız

DOI
https://doi.org/10.2298/BOTSERB2101087T
Journal volume & issue
Vol. 45, no. 1
pp. 87 – 96

Abstract

Read online

Soil salinization is an important environmental problem affecting agricultural production worldwide. Seed germination is a critical process, and seedling establishment under saline conditions can be achieved by successful germination. In the present study, comparative proteomics combined with physiological analyses were used to investigate the protein alterations in germinating Brassica napus cultivars (Caravel and Sary) under NaCl stress. Seed germination declined with the increasing NaCl concentration. However, Caravel exhibited better performance in terms of seed germination and seedling growth under salinity stress. Therefore, Caravel was found to be more tolerant to salinity than Sary. The root proteins were extracted from B. napus cultivars germinating on a plant growth medium with or without 100 mM NaCl for seven days. After the root proteins had been separated by two-dimensional (2-D) gel electrophoresis, the differentially accumulated proteins were identified using MALDI-TOF/TOF MS. The comparative proteomics analysis revealed 12 and 27 statistically significant proteins accumulated in the NaCl-treated roots of Caravel and Sary, respectively. The identified proteins were mostly involved in protein metabolism, stress defense, cytoskeleton and cell wall metabolism, and energy metabolism. The salt-sensitive cultivar Sary displayed an elevated accumulation of proteins involved in antioxidant defense and the protein catabolic process such as superoxide dismutase [Fe], L-ascorbate peroxidase 1, and different components of the proteasome system. On the other hand, the levels of molecular chaperones including 20 kDa chaperonin, chaperonin CPN60, heat shock cognate protein HSC70, and heat shock 70 kDa protein 1 were higher in Caravel than Sary under salt stress. These findings will provide the possible mechanisms which contribute to salt tolerance and may serve as the basis for improving salinity tolerance in rapeseed

Keywords