Scientific Reports (Jul 2017)

Polar metal phase stabilized in strained La-doped BaTiO3films

  • K. S. Takahashi,
  • Y. Matsubara,
  • M. S. Bahramy,
  • N. Ogawa,
  • D. Hashizume,
  • Y. Tokura,
  • M. Kawasaki

DOI
https://doi.org/10.1038/s41598-017-04635-3
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Ferroelectric polarization and metallic conduction are two seemingly irreconcilable properties that cannot normally coexist in a single system, as the latter tends to screen the former. Polar metals, however, defy this rule and have thus attracted considerable attention as a new class of ferroelectrics exhibiting novel properties. Here, we fabricate a new polar metal film based on the typical ferroelectric material BaTiO3by combining chemical doping and epitaxial strain induced by a substrate. The temperature dependences of the c-axis lattice constant and the second harmonic generation intensity of La-doped BaTiO3films indicate the existence of polar transitions. In addition, through La doping, films become metallic at the polar phase, and metallicity enhancement at the polar state occurs in low-La-doped films. This intriguing behaviour is effectively explained by our first-principles calculations. Our demonstration suggests that the carrier doping to ferroelectric material with epitaxial strain serves as a new way to explore polar metals.