Electronic Journal of Differential Equations (May 2000)

The maximum principle for equations with composite coefficients

  • Gary M. Lieberman

Journal volume & issue
Vol. 2000, no. 38
pp. 1 – 17

Abstract

Read online

It is well-known that the maximum of the solution of a linear elliptic equation can be estimated in terms of the boundary data provided the coefficient of the gradient term is either integrable to an appropriate power or blows up like a small negative power of distance to the boundary. Apushkinskaya and Nazarov showed that a similar estimate holds if this term is a sum of such functions provided the boundary of the domain is sufficiently smooth and a Dirichlet condition is prescribed. We relax the smoothness of the boundary and also consider non-Dirichlet boundary conditions using a variant of the method of Apushkinskaya and Nazarov. In addition, we prove a Holder estimate for solutions of oblique derivative problems for nonlinear equations satisfying similar conditions.

Keywords