Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) (Feb 2020)
Neural Network Backprogation Identifikasi Pola Harga Saham Jakarta Islamic Index (JII)
Abstract
Jakarta Islamic Index (JII) is an organization engaged in the economy with the aim to pay attention to stock movements every day. With the JII, people who do not understand about shares and their movements, will be easy to know and understand the movement of shares that occur at certain times. The problem in this research is that many investors are unable to predict the rise and fall of stock prices. The prediction process can be done with a backpropagation algorithm. The algorithm is a concept of computer science which is widely used in the case of analysis, prediction and pattern determination. The process starts from the analysis of the variables used namely interest rates, exchange rates, inflation rates and stock prices that occurred in the previous period. The variables used are continued in the formation of network patterns and continued in the process of training and testing in order to produce the best network patterns so that they are used as a process of identifying JII stock price movements. The results obtained in the form of the value of stock price movements with an error rate based on the MSE value of 11.85% so that this study provides information in the form of knowledge for making a decision. The purpose of the research is used as input for investors in identifying share prices. In the end, the benefits felt from the results of this study, investors can make an initial estimate before investing in JII.
Keywords