Foods (Aug 2023)
Effect of Adding Fermented Proso Millet Bran Dietary Fiber on Micro-Structural, Physicochemical, and Digestive Properties of Gluten-Free Proso Millet-Based Dough and Cake
Abstract
The increasing demand for functional foods has pushed the food industry to produce fiber-enriched products. In this study, rheological, microstructural, physicochemical, and functional characteristics were investigated for whole proso millet dough and cake, fortified with fermented proso millet bran dietary fiber flour (F-DF). Results showed that proso millet flour is less absorbent and stable than the control group. Adding proso millet flour and F-DF reduced the elasticity of the dough and increased its hardness, but had no significant effect on viscosity, cohesion, and resilience. The microstructure analysis exhibited an unformed continuous network formation in proso millet dough. Analyses suggested that proso millet flour combined with the fermented dietary fiber group had significantly higher total phenol content (0.46 GAE mg/g), DPPH• scavenging activity (66.84%), and ABTS•+ scavenging activity (87.01%) than did the other group. In addition, F-DF led to a significant reduction in the predicted released glucose contents of reformulated cakes. In summary, cakes prepared with the involvement of whole proso millet flour and F-DF exhibited less adverse sensory impact and possessed the potential to decrease postprandial blood glucose levels resulting purely from cake consumption.
Keywords