EPJ Web of Conferences (Dec 2012)
Potential energy surfaces of actinide and transfermium nuclei from multi-dimensional constraint covariant density functional theories
Abstract
Multi-dimensional constrained covariant density functional theories were developed recently. In these theories, all shape degrees of freedom βλμ deformations with even μ are allowed, e.g., β20, β22, β30, β32, β40, β42, β44, and so on and the CDFT functional can be one of the following four forms: the meson exchange or point-coupling nucleon interactions combined with the non-linear or density-dependent couplings. In this contribution, some applications of these theories are presented. The potential energy surfaces of actinide nuclei in the (β20, β22, β30) deformation space are investigated. It is found that besides the octupole deformation, the triaxiality also plays an important role upon the second fission barriers. The non-axial reflection-asymmetric β32 shape in some transfermium nuclei with N = 150, namely 246Cm, 248Cf, 250Fm, and 252No are studied.