Scientific Reports (Jun 2022)

Machine learning-based suggestion for critical interventions in the management of potentially severe conditioned patients in emergency department triage

  • Hansol Chang,
  • Jae Yong Yu,
  • Sunyoung Yoon,
  • Taerim Kim,
  • Won Chul Cha

DOI
https://doi.org/10.1038/s41598-022-14422-4
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Providing timely intervention to critically ill patients is a challenging task in emergency departments (ED). Our study aimed to predict early critical interventions (CrIs), which can be used as clinical recommendations. This retrospective observational study was conducted in the ED of a tertiary hospital located in a Korean metropolitan city. Patient who visited ED from January 1, 2016, to December 31, 2018, were included. Need of six CrIs were selected as prediction outcomes, namely, arterial line (A-line) insertion, oxygen therapy, high-flow nasal cannula (HFNC), intubation, Massive Transfusion Protocol (MTP), and inotropes and vasopressor. Extreme gradient boosting (XGBoost) prediction model was built by using only data available at the initial stage of ED. Overall, 137,883 patients were included in the study. The areas under the receiver operating characteristic curve for the prediction of A-line insertion was 0·913, oxygen therapy was 0.909, HFNC was 0.962, intubation was 0.945, MTP was 0.920, and inotropes or vasopressor administration was 0.899 in the XGBoost method. In addition, an increase in the need for CrIs was associated with worse ED outcomes. The CrIs model was integrated into the study site's electronic medical record and could be used to suggest early interventions for emergency physicians.