Journal of Road Engineering (Jun 2025)

Deploying machine learning for long-term road pavement moisture prediction: A case study from Queensland, Australia

  • Ayesh Dushmantha,
  • Ruixuan Zhang,
  • Yilin Gui,
  • Jinjiang Zhong,
  • Chaminda Gallage

Journal volume & issue
Vol. 5, no. 2
pp. 184 – 201

Abstract

Read online

Moisture accumulation within road pavements, particularly in unbound granular materials with or without thin sprayed seals, presents significant challenges in high-rainfall regions such as Queensland. This infiltration often leads to various forms of pavement distress, eventually causing irreversible damage to the pavement structure. The moisture content within pavements exhibits considerable dynamism and directly influenced by environmental factors such as precipitation, air temperature, and relative humidity. This variability underscores the importance of monitoring moisture changes using real-time climatic data to assess pavement conditions for operational management or incorporating these effects during pavement design based on historical climate data. Consequently, there is an increasing demand for advanced, technology-driven methodologies to predict moisture variations based on climatic inputs. Addressing this gap, the present study employs five traditional machine learning (ML) algorithms, K-nearest neighbors (KNN), regression trees, random forest, support vector machines (SVMs), and gaussian process regression (GPR), to forecast moisture levels within pavement layers over time, with varying algorithm complexities. Using data collected from an instrumented road in Brisbane, Australia, which includes pavement moisture and climatic factors, the study develops predictive models to forecast moisture content at future time steps. The approach incorporates current moisture content, rather than averaged values, along with seasonality (both daily and annual), and key climatic factors to predict next step moisture. Model performance is evaluated using R2, MSE, RMSE, and MAPE metrics. Results show that ML algorithms can reliably predict long-term moisture variations in pavements, provided optimal hyperparameters are selected for each algorithm. The best-performing algorithms include KNN (the number of neighbours equals to 15), medium regression tree, medium random forest, coarse SVM, and simple GPR, with medium random forest outperforming the others. The study also identifies the optimal hyperparameter combinations for each algorithm, offering significant advancements in moisture prediction tools for pavement technology.

Keywords