Remote Sensing (Oct 2014)

Evaluating Saturation Correction Methods for DMSP/OLS Nighttime Light Data: A Case Study from China’s Cities

  • Lin Ma,
  • Jiansheng Wu,
  • Weifeng Li,
  • Jian Peng,
  • Hao Liu

DOI
https://doi.org/10.3390/rs6109853
Journal volume & issue
Vol. 6, no. 10
pp. 9853 – 9872

Abstract

Read online

Remotely sensed nighttime lights (NTL) datasets derived from the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) have been identified as a good indicator of the urbanization process and have been widely used to study such demographic and economic variables as population distribution and density, electricity consumption, and carbon emission. However, one issue must be considered in the application of NTL data, i.e., saturation in the bright cores of urban centers. In this study, we evaluate four correction methods in China’s cities: the linear regression model and the cubic regression model at the regional level, and the Human Settlement Index (HSI) and the Vegetation Adjusted NTL Urban Index (VANUI) at a pixel level. The results suggest that both correction methods at the regional level improve the correlation between NTL data and socioeconomic variables. However, since the methods can only be used on saturated pixels, the correction effects are limited, as the saturated area in Chinese cities is rather small. HSI and VANUI increase the inter-urban variability within certain cities, especially when their vegetation health and abundance is negatively correlated with NTL. However, the indices may induce bias when applied in a large region with a diverse natural environment and vegetation, and the application of HSI with a relatively high sensitivity of HSI to NDVI may be limited as NTL approaches maximum. Proper methods for reducing saturation effects should thus vary with different study areas and research purposes.

Keywords