Chemistry Central Journal (Jul 2010)
Assessment and validation of the CAESAR predictive model for bioconcentration factor (BCF) in fish
Abstract
Abstract Background Bioconcentration factor (BCF) describes the behaviour of a chemical in terms of its likelihood of concentrating in organisms in the environment. It is a fundamental property in recent regulations, such as the European Community Regulation on chemicals and their safe use or the Globally Harmonized System for classification, labelling and packaging. These new regulations consider the possibility of reducing or waiving animal tests using alternative methods, such as in silico methods. This study assessed and validated the CAESAR predictive model for BCF in fish. Results To validate the model, new experimental data were collected and used to create an external set, as a second validation set (a first validation exercise had been done just after model development). The performance of the model was compared with BCFBAF v3.00. For continuous values and for classification purposes the CAESAR BCF model gave better results than BCFBAF v3.00 for the chemicals in the applicability domain of the model. R2 and Q2 were good and accuracy in classification higher than 90%. Applying an offset of 0.5 to the compounds predicted with BCF close to the thresholds, the number of false negatives (the most dangerous errors) dropped considerably (less than 0.6% of chemicals). Conclusions The CAESAR model for BCF is useful for regulatory purposes because it is robust, reliable and predictive. It is also fully transparent and documented and has a well-defined applicability domain, as required by REACH. The model is freely available on the CAESAR web site and easy to use. The reliability of the model reporting the six most similar compounds found in the CAESAR dataset, and their experimental and predicted values, can be evaluated.