Biomolecules (Feb 2020)
Chemical Composition of Essential Oils from Different Parts of <i>Zingiber</i> <i>kerrii</i> Craib and Their Antibacterial, Antioxidant, and Tyrosinase Inhibitory Activities
Abstract
The essential oils of the fresh rhizomes; flowers; and leaves of Zingiber kerrii Craib were investigated using different extraction techniques; including solid-phase microextraction (SPME), hydrodistillation (HD), and organic solvent (OS), and characterized by gas chromatography−mass spectrometry (GC−MS). A total of 37 SPME; 19 HD; and 36 OS compounds were identified from the rhizome extract of Z. kerrii; with the major components being α-pinene; β-pinene; and terpinen-4-ol; respectively. From the flower extract; 16 SPME; 2 HD; and 10 OS compounds were identified; (E)-caryophyllene was found as a major compound by these techniques. The leaf extract exhibited 20 SPME; 13 HD; and 14 OS compounds; with α-pinene; (E)-caryophyllene; and n-hexadecanoic acid being the major compounds; respectively. The rhizome extract showed tyrosinase inhibitory activity of 71.60% and a total phenolic content of 22.4 mg gallic acid/g. The IC50 values of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays were 25.2 µg/mL and 153.6 µg/mL; respectively; and the ferric ion reducing antioxidant power (FRAP) assay value was 318.5 µM ascorbic acid equivalent (AAE)/g extract. The rhizome extract showed weak antibacterial activity. This extract showed no adverse toxicity in human keratinocyte (HaCaT) cell lines at concentrations below 200 µg/mL.
Keywords