Remote Sensing (Sep 2024)
The Reconstruction of FY-4A and FY-4B Cloudless Top-of-Atmosphere Radiation and Full-Coverage Particulate Matter Products Reveals the Influence of Meteorological Factors in Pollution Events
Abstract
By utilizing top-of-atmosphere radiation (TOAR) data from China’s new generation of geostationary satellites (FY-4A and FY-4B) along with interpretable machine learning models, near-surface particulate matter concentrations in China were estimated, achieving hourly temporal resolution, 4 km spatial resolution, and 100% spatial coverage. First, the cloudless TOAR data were matched and modeled with the solar radiation products from the ERA5 dataset to construct and estimate a fully covered TOAR dataset under assumed clear-sky conditions, which increased coverage from 20–30% to 100%. Subsequently, this dataset was applied to estimate particulate matter. The analysis demonstrated that the fully covered TOAR dataset (R2 = 0.83) performed better than the original cloudless dataset (R2 = 0.76). Additionally, using feature importance scores and SHAP values, the impact of meteorological factors and air mass trajectories on the increase in PM10 and PM2.5 during dust events were investigated. The analysis of haze events indicated that the main meteorological factors driving changes in particulate matter included air pressure, temperature, and boundary layer height. The particulate matter concentration products obtained using fully covered TOAR data exhibit high coverage and high spatiotemporal resolution. Combined with data-driven interpretable machine learning, they can effectively reveal the influencing factors of particulate matter in China.
Keywords