BMC Plant Biology (Feb 2021)
Fruit ripening-associated leucylaminopeptidase with cysteinylglycine dipeptidase activity from durian suggests its involvement in glutathione recycling
Abstract
Abstract Background Durian (Durio zibethinus L.) is a highly popular fruit in Thailand and several other Southeast Asian countries. It is abundant in essential nutrients and sulphur-containing compounds such as glutathione (GSH) and γ-glutamylcysteine (γ-EC). Cysteinylglycine (Cys-Gly) is produced by GSH catabolism and occurs in durian fruit pulp. Cysteine (Cys) is a precursor of sulphur-containing volatiles generated during fruit ripening. The aforementioned substances contribute to the strong odour and flavour of the ripe fruit. However, the genes encoding plant Cys-Gly dipeptidases are unknown. The aim of this study was to measure leucylaminopeptidase (LAP) activity in durian fruit pulp. Results We identified DzLAP1 and DzLAP2, which the former was highly expressed in the fruit pulp. DzLAP1 was expressed at various ripening stages and in response to ethephon/1-MCP treatment. Hence, DzLAP1 is active at the early stages of fruit ripening. DzLAP1 is a metalloenzyme ~ 63 kDa in size. It is activated by Mg2+ or Mn2+ and, like other LAPs, its optimal alkaline pH is 9.5. Kinetic studies revealed that DzLAP1 has Km = 1.62 mM for its preferred substrate Cys-Gly. DzLAP1-GFP was localised to the cytosol and targeted the plastids. In planta Cys-Gly hydrolysis was confirmed for Nicotiana benthamiana leaves co-infiltrated with Cys-Gly and expressing DzLAP1. Conclusions DzLAP1 has Cys-Gly dipeptidase activity in the γ-glutamyl cycle. The present study revealed that the LAPs account for the high sulphur-containing compound levels identified in fully ripened durian fruit pulp.
Keywords