Frontiers in Bioengineering and Biotechnology (Nov 2023)

A highly sensitive flexible capacitive pressure sensor with hierarchical pyramid micro-structured PDMS-based dielectric layer for health monitoring

  • Luyu Lv,
  • Luyu Lv,
  • Tianxiang Liu,
  • Tianxiang Liu,
  • Ting Jiang,
  • Jiamin Li,
  • Jiamin Li,
  • Jie Zhang,
  • Jie Zhang,
  • Qihui Zhou,
  • Qihui Zhou,
  • Rajendra Dhakal,
  • Xiao Li,
  • Yuanyue Li,
  • Zhao Yao,
  • Zhao Yao

DOI
https://doi.org/10.3389/fbioe.2023.1303142
Journal volume & issue
Vol. 11

Abstract

Read online

Herein, a flexible pressure sensor with high sensitivity was created using a dielectric layer featuring a hierarchical pyramid microstructure, both in simulation and fabrication. The capacitive pressure sensor comprises a hierarchically arranged dielectric layer made of polydimethylsiloxane (PDMS) with pyramid microstructures, positioned between copper electrodes at the top and bottom. The achievement of superior sensing performance is highly contingent upon the thickness of the dielectric layer, as indicated by both empirical findings and finite-element analysis. Specifically, the capacitive pressure sensor, featuring a dielectric layer thickness of 0.5 mm, exhibits a remarkable sensitivity of 0.77 kPa-1 within the pressure range below 1 kPa. It also demonstrates an impressive response time of 55 ms and recovery time of 42 ms, along with a low detection limit of 8 Pa. Furthermore, this sensor showcases exceptional stability and reproducibility with up to 1,000 cycles. Considering its exceptional achievements, the pressure sensor has been effectively utilized for monitoring physiological signals, sign language gestures, and vertical mechanical force exerted on objects. Additionally, a 5 × 5 sensor array was fabricated to accurately and precisely map the shape and position of objects. The pressure sensor with advanced performance shows broad potential in electronic skin applications.

Keywords