Results in Physics (Oct 2023)

Defect-regulated charge carrier dynamics in two-dimensional ZnO/MoS2 heterostructure

  • Shuhong Ma,
  • Ningxin Liu,
  • Zheng Li,
  • Chaochao Qin,
  • Zhaoyong Jiao

Journal volume & issue
Vol. 53
p. 106948

Abstract

Read online

Van der Waals ZnO/MoS2 heterostructure has been experimentally demonstrated as one of the potential candidates for photocatalyst, however, the charge carrier dynamics upon photoexcitation still remains unclear. By using nonadiabatic molecular dynamics simulations, we mainly focus on the influences of interfacial point defects on photogenerated charge separation in the ZnO/MoS2. The results reveal that oxygen vacancy in ZnO layer can induce a higher hole transfer efficiency compared to the pristine ZnO/MoS2, which attributes to the enhanced nonadiabatic coupling, originating from an out-of-plane vibration mode of S atoms, a decreased energy gap for intralayer hole transfer and stronger energy state oscillation. Alternatively, S vacancy in MoS2 introducing additional energy states in the band gap of ZnO/MoS2, serves as charge carrier recombination channels, and significantly reduces charge carrier lifetime, while doping O atom in S vacancy can compensate this effect. This study provides helpful guidance to design functional devices for solar energy photovoltaic conversion, based on two-dimensional ZnO/MoS2 heterostructures.

Keywords