Applied Sciences (Jan 2019)
Double-Diffracted Spatially Separated Heterodyne Grating Interferometer and Analysis on its Alignment Tolerance
Abstract
An optical configuration of double-diffracted spatially separated heterodyne grating interferometer with a mechanical fixture was designed. To further investigate its features and provide robust measurements, the alignment tolerance in double-diffracted spatially separated heterodyne grating interferometer was qualitatively and quantitatively analyzed. Except for the offset error causing no influence on the interfering signal, the effect of the other four errors, roll, yaw, pitch angles, and stand-off error were geometrically analyzed and mathematically modeled. The simulation result quantified the position mismatches of output beams in a double-diffracted configuration and found the crucial structural parameters related to the intensity of interfering signals. Experiments based on the grating interferometer with a mechanical fixture and the same optical configuration built by independent optical components were implemented, whose results agreed with the simulation. Besides, the results showed that the proposed grating interferometer structure could tolerate the ±1100 arcsec roll movement, ±440 arcsec yaw movement, ±280 arcsec pitch movement, and ±0.6 mm stand-off error when -10 dB intensity loss is afforded.
Keywords