Annales Geophysicae (Feb 2021)

Seasonal dependence of the Earth's radiation belt – new insights

  • R. Hajra

DOI
https://doi.org/10.5194/angeo-39-181-2021
Journal volume & issue
Vol. 39
pp. 181 – 187

Abstract

Read online

Long-term variations in the relativistic (∼MeV) electrons in the Earth's radiation belt are explored to study seasonal features of the electrons. An L-shell dependence of the seasonal variations in the electrons is reported for the first time. A clear ∼6 month periodicity, representing one/two peaks per year, is identified for 1.5–6.0 MeV electron fluxes in the L shells between ∼3.0 and ∼5.0. The relativistic electron flux variation is strongest during solar cycle descending to minimum phases, with weaker/no variations during solar maximum. If two peaks per year occur, they are largely asymmetric in amplitude. The peaks essentially do not have an equinoctial dependence. Sometimes the peaks are shifted to solstices, and sometimes only one annual peak is observed. No such seasonal features are prominent for L<3.0 and L>5.0. The results imply varying solar/interplanetary drivers of the radiation belt electrons at different L shells. This has a potential impact on the modeling of the space environment. Plausible solar drivers are discussed.