Applied Sciences (Jan 2023)

ANN Prediction Model of Concrete Fatigue Life Based on GRW-DBA Data Augmentation

  • Jinna Shi,
  • Wenxiu Zhang,
  • Yanru Zhao

DOI
https://doi.org/10.3390/app13021227
Journal volume & issue
Vol. 13, no. 2
p. 1227

Abstract

Read online

In order to improve the prediction accuracy of the machine learning model for concrete fatigue life using small datasets, a group calculation and random weight dynamic time warping barycentric averaging (GRW-DBA) data augmentation method is proposed. First, 27 sets of real experimental data were augmented by 10 times, 20 times, 50 times, 100 times, 200 times, 500 times, and 1000 times, respectively, using the GRW-DBA method, and the optimal factor was determined by comparing the model’s training time and prediction accuracy under different augmentation multiples. Then, a concrete fatigue life prediction model was established based on artificial neural network (ANN), and the hyperparameters of the model were determined through experiments. Finally, comparisons were made with data augmentation methods such as generative adversarial network (GAN) and regression prediction models such as support vector machine (SVM), and the generalization of the method was verified using another fatigue life dataset collected on the Internet. The result shows that the GRW-DBA algorithm can significantly improve the prediction accuracy of the ANN model when using small datasets (the R2 index increased by 20.1% compared with the blank control, reaching 98.6%), and this accuracy improvement is also verified in different data distributions. Finally, a graphical user interface is created based on the developed model to facilitate application in engineering.

Keywords