Scientific Reports (Jul 2023)

Establishing and testing a robot-based platform to enable the automated production of nanoparticles in a flexible and modular way

  • Sofia Dembski,
  • Thomas Schwarz,
  • Maximilian Oppmann,
  • Shahbaz Tareq Bandesha,
  • Jörn Schmid,
  • Sarah Wenderoth,
  • Karl Mandel,
  • Jan Hansmann

DOI
https://doi.org/10.1038/s41598-023-38535-6
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Robotic systems facilitate relatively simple human–robot interaction for non-robot experts, providing the flexibility to implement different processes. In this context, shorter process times, as well as an increased product and process quality could be achieved. Robots short time-consuming processes, take over ergonomically unfavorable tasks and work efficiently all the time. In addition, flexible production is possible while maintaining or even increasing safety. This study describes the successful development of a dual-arm robot-based modular infrastructure and the establishment of an automated process for the reproducible production of nanoparticles. As proof of concept, a manual synthesis protocol for silica nanoparticle preparation with a diameter of about 200 nm as building blocks for photonic crystals was translated into a fully automated process. All devices and components of the automated system were optimized and adapted according to the synthesis requirements. To demonstrate the benefit of the automated nanoparticle production, manual (synthesis done by lab technicians) and automated syntheses were benchmarked. To this end, different processing parameters (time of synthesis procedure, accuracy of dosage etc.) and the properties of the produced nanoparticles were compared. We demonstrate that the use of the robot not only increased the synthesis accuracy and reproducibility but reduced the personnel time and costs up to 75%.