International Journal of Nanomedicine (Aug 2022)

Erythrocyte Membrane-Enveloped Salvianolic Acid B Nanoparticles Attenuate Cerebral Ischemia-Reperfusion Injury

  • Zhang S,
  • Li R,
  • Zheng Y,
  • Zhou Y,
  • Fan X

Journal volume & issue
Vol. Volume 17
pp. 3561 – 3577

Abstract

Read online

Shanshan Zhang,1 Ruoqi Li,1 Yingyi Zheng,1 Yuan Zhou,1 Xiang Fan1,2 1School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China; 2Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of ChinaCorrespondence: Xiang Fan, School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, People’s Republic of China, Tel +86-0571-86610596, Email [email protected]: Ischemic stroke is the second leading cause of death and the third leading cause of disability worldwide. Salvianolic acid B (SAB), a water-soluble phenolic acid derived from the traditional Chinese medicine Salvia miltiorrhiza, exerted protective effects on cerebral ischemia-reperfusion injury. However, the efficacy of SAB is seriously hindered by poor blood brain barrier (BBB) permeability and short biological half-life in plasma. Brain targeted biomimetic nanoparticle delivery systems offer much promise in overcoming these limitations.Methods: A brain targeted biomimetic nanomedicine (RR@SABNPs) was developed, which comprised of SAB loaded bovine serum albumin nanoparticles and functionalized red blood cell membrane (RBCM) with Arg-Gly-Asp (RGD). The characterization parameters, including particle size, zeta potential, morphology, Encapsulation Efficiency (EE), Drug Loading (DL), release behavior, stability, and biocompatibility, were investigated. Moreover, the middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model was used to assess the therapeutic efficacy of RR@SABNPs on ischemic stroke. Finally, the reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were detected by DHE and JC‑1 staining in oxygen-glucose deprivation/reperfusion (OGD/R) and H2O2 injured PC12 cells.Results: RR@SABNPs exhibited spheric morphology with core-shell structures and good stability and biocompatibility. Meanwhile, RR@SABNPs can significantly prolong SAB circulation time by overcoming the reticuloendothelial system (RES) and actively targeting ischemic BBB. Moreover, RR@SABNPs had comprehensive protective effects on MCAO/R model mice, manifested as a reduced infarct volume and improved neurological and sensorimotor functions, and significantly scavenged excess ROS and maintained MMP.Conclusion: The designed brain targeted biomimetic nanomedicine RR@SABNPs can significantly prolong the half-time of SAB, deliver SAB into the ischemic brain and exhibit good therapeutic effects on MCAO/R model mice.Graphical Abstract: Keywords: red blood cell membrane, blood brain barrier, long circulation, reactive oxygen species, mitochondrial membrane potential

Keywords