Department of Molecular Metabolism, Division of Biological Sciences, Harvard TH Chan School of Public Health, Boston, United States; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Alexander L Hyde
Department of Molecular Metabolism, Division of Biological Sciences, Harvard TH Chan School of Public Health, Boston, United States
Sihao Liu
Department of Molecular Metabolism, Division of Biological Sciences, Harvard TH Chan School of Public Health, Boston, United States
David Jacobi
Department of Molecular Metabolism, Division of Biological Sciences, Harvard TH Chan School of Public Health, Boston, United States
Nan-Shih Liao
Institute of Molecular Biology, Academia Sinica, Taiwanese, China
Metabolic pathways and inflammatory processes are under circadian regulation. Rhythmic immune cell recruitment is known to impact infection outcomes, but whether the circadian clock modulates immunometabolism remains unclear. We find that the molecular clock Bmal1 is induced by inflammatory stimulants, including Ifn-γ/lipopolysaccharide (M1) and tumor-conditioned medium, to maintain mitochondrial metabolism under metabolically stressed conditions in mouse macrophages. Upon M1 stimulation, myeloid-specific Bmal1 knockout (M-BKO) renders macrophages unable to sustain mitochondrial function, enhancing succinate dehydrogenase (SDH)-mediated mitochondrial production of reactive oxygen species as well as Hif-1α-dependent metabolic reprogramming and inflammatory damage. In tumor-associated macrophages, aberrant Hif-1α activation and metabolic dysregulation by M-BKO contribute to an immunosuppressive tumor microenvironment. Consequently, M-BKO increases melanoma tumor burden, whereas administering the SDH inhibitor dimethyl malonate suppresses tumor growth. Therefore, Bmal1 functions as a metabolic checkpoint that integrates macrophage mitochondrial metabolism, redox homeostasis and effector functions. This Bmal1-Hif-1α regulatory loop may provide therapeutic opportunities for inflammatory diseases and immunotherapy.