Atmosphere (Jun 2025)
Applicability Evaluation of Antarctic Ozone Reanalysis and Merged Satellite Datasets
Abstract
In this study, based on total column ozone observations from eight Antarctic stations, we evaluate the applicability of ERA5, C3S-MSR, MERRA-2, and JRA-55 reanalysis datasets and the NIWA-BS merged satellite dataset, in terms of interannual variation and long-term trend, using the correlation coefficient (R), root-mean-square error (RMSE), interannual variability skill score (IVS), and linear trend bias (TrBias). The results show that for interannual variation, C3S-MSR performs well at multiple stations, while JRA-55 performs poorly at most stations, especially Marambio, Rothera, and Faraday/Vernadsky, which are located at lower latitudes on the Antarctic Peninsula. Additionally, all datasets show significantly higher RMSE at Dumont D’Urville and Arrival Heights, which generally are located around the edge of the Antarctic stratospheric vortex where total column ozone values are more variable and on average larger than in the core of the vortex. The comprehensive ranking results show that C3S-MSR performs the best, followed by ERA5 and NIWA-BS, with MERRA-2 and JRA-55 ranking lower. For the long-term trend, each of the datasets has large bias values at Arrival Heights, and the absolute TrBias values of JRA-55 are larger at three stations on the Antarctic Peninsula. The overall averaged results show that C3S-MSR and NIWA-BS have the smallest absolute TrBias, and perform best in reflecting the Antarctic ozone trends, while ERA5 and JRA-55 significantly overestimate the Antarctic ozone recovery trend and perform poorly. Based on our analysis, the C3S-MSR dataset can be recommended to be prioritized when analyzing the interannual variations in Antarctic stratospheric ozone, and both the C3S-MSR reanalysis and NIWA-BS datasets should be prioritized for trend analysis.
Keywords