Remote Sensing (Sep 2024)
Assessment of Spatial Characterization Metrics for On-Orbit Performance of Landsat 8 and 9 Thermal Infrared Sensors
Abstract
The two near-identical pushbroom Thermal Infrared Sensors (TIRS) aboard Landsat 8 and 9 are currently imaging the Earth’s surface at 10.9 and 12 microns from similar 705 km altitude, sun-synchronous polar orbits. This work validates the consistency in the imaging data quality, which is vital for harmonization of the data from the two sensors needed for global mapping. The overlapping operation of these two near-identical sensors, launched eight years apart, provides a unique opportunity to assess the sensitivity of the conventionally used metrics to any unexpectedly found nuanced differences in their spatial performance caused by variety of factors. Our study evaluates spatial quality metrics for bands 10 and 11 from 2022, the first complete year during which both TIRS instruments have been operational. The assessment relies on the straight-knife-edge technique, also known as the Edge Method. The study focuses on comparing the consistency and stability of eight separate spatial metrics derived from four separate water–desert boundary scenes. Desert coastal scenes were selected for their high thermal contrast in both the along- and across-track directions with respect to the platforms ground tracks. The analysis makes use of the 30 m upsampled TIRS images. The results show that the Landsat 8 and Landsat 9 TIRS spatial performance are both meeting the spatial performance requirements of the Landsat program, and that the two sensors are consistent and nearly identical in both across- and along-track directions. Better agreement, both with time and in magnitude, is found for the edge slope and line spread function’s full-width at half maximum. The trend of averaged modulation transfer function at Nyquist shows that Landsat 8 TIRS MTF differs more between the along- and across-track scans than that for Landsat 9 TIRS. The across-track MTF is consistently lower than that for the along-track, though the differences are within the scatter seen in the results due to the use of the natural edges.
Keywords