Land (Mar 2023)

A Paradigm Shift towards Beneficial Microbes Enhancing the Efficiency of Organic and Inorganic Nitrogen Sources for a Sustainable Environment

  • Haji Muhammad,
  • Shah Fahad,
  • Shah Saud,
  • Shah Hassan,
  • Wajid Nasim,
  • Baber Ali,
  • Hafiz Mohkum Hammad,
  • Hafiz Faiq Bakhat,
  • Muhammad Mubeen,
  • Amir Zaman Khan,
  • Ke Liu,
  • Matthew Tom Harrison,
  • Hamada AbdElgawad,
  • Mostafa A. Abdel-Maksoud

DOI
https://doi.org/10.3390/land12030680
Journal volume & issue
Vol. 12, no. 3
p. 680

Abstract

Read online

The use of beneficial microbes as biofertilizer has become fundamental in the agricultural sector for their potential role in food safety and sustainable crop production. A field trial was conducted to study the influence of beneficial microbes on the efficiency of organic and inorganic sources. The experiment was conducted in two consecutive years (2008–2009 and 2009–2010) in a farmer’s field at Dargai Malakand Division. A randomized complete block design was used with four replications. The results revealed a significantly higher straw and grain nitrogen concentrations for the treatments receiving 50% N from urea + 50% N from FYM + BM, followed by the treatments receiving 50% N from urea + 50% N from (FYM + PM) + BM and 120 kg N ha−1 from urea fertilizer, respectively. Comparing the relevant treatments with and without BM, an increasing trend in N concentrations in straw and grain was observed with BM. The results revealed the highest grain total nitrogen, straw total nitrogen and total nitrogen uptake by wheat crop for the treatments receiving 120 kg N ha−1 from urea, followed by the treatments receiving 50% N from urea + 50% N from PM + BM and 50% N from urea + 50% N from (FYM + PM) + BM. Moreover, after comparing the relevant treatments with and without BM, for the parameters mentioned, an increasing trend in nitrogen uptake was observed. Significantly higher total soil nitrogen was obtained for treatment with 50% N from urea + 50% N from FYM + BM, followed by the treatment with 50% N from urea + 50% N from (FYM + PM) + BM or 50% N from urea + 50% N from PM + BM, respectively, as compared to the control treatment plot. Markedly higher soil mineral nitrogen was obtained for the 50% N from urea + 50% N from (FYM + PM) + BM treatment, followed by the treatment with 50% N from urea + 50% N from FYM + BM and 50% N treatment from urea + 50% N from PM + BM, compared to the control treatment. Comparing the relevant treatments with and without BM, an increasing trend in total soil N (g kg−1 soil) and soil mineral N (mg kg−1 soil) was noted with BM application. From the results, a significant increase in soil organic matter status (g kg−1 soil) due to application of organic and inorganic fertilization was summarized. Significantly higher soil organic matter (g kg−1 soil) was recorded for the treatment receiving 50% N from urea + 50% N from FYM + BM compared to untreated control plots. Our study further revealed an increasing trend in soil organic matter status (g kg−1 soil) when comparing the relevant treatments with and without BM.

Keywords