AIMS Mathematics (Jul 2021)

Uniqueness of difference polynomials

  • Xiaomei Zhang ,
  • Xiang Chen

DOI
https://doi.org/10.3934/math.2021608
Journal volume & issue
Vol. 6, no. 10
pp. 10485 – 10494

Abstract

Read online

Let $ f(z) $ be a transcendental meromorphic function of finite order and $ c\in\Bbb{C} $ be a nonzero constant. For any $ n\in\Bbb{N}^{+} $, suppose that $ P(z, f) $ is a difference polynomial in $ f(z) $ such as $ P(z, f) = a_{n}f(z+nc)+a_{n-1}f(z+(n-1)c)+\cdots+a_{1}f(z+c)+a_{0}f(z) $, where $ a_{k} (k = 0, 1, 2, \cdots, n) $ are not all zero complex numbers. In this paper, the authors investigate the uniqueness problems of $ P(z, f) $.

Keywords