Nanophotonics (May 2023)
Germanium metasurface assisted broadband detectors
Abstract
The demand on broadband near-infrared photodetections with high responsivity is becoming increasingly eminent; however its realization remains a significant technological challenge. Here we design, fabricate, and characterize a broadband Ge photodetector (1000–1600 nm), composed of densely packed 230-nm-thick Ge disks of different diameters (255 nm, 320 nm, and 500 nm), placed on top of a 105-nm-thin Ge layer. Using experimentally measured and calculated transmission and absorption spectra, we demonstrate that the absorption and detector responsivity are increased by nearly 2 orders of magnitude, compared to the unstructured Ge photodetector, due to the excitation of magnetic dipole resonances in Ge disks, while preserving a relatively low dark current. Our approach is simple and can be easily adapted to other semiconductor material platforms and operation wavelengths to enable performance improvements of broadband photodetector devices.
Keywords