Water (Aug 2019)

Relationship between Water Temperature of Polish Rivers and Large-Scale Atmospheric Circulation

  • Renata Graf,
  • Dariusz Wrzesiński

DOI
https://doi.org/10.3390/w11081690
Journal volume & issue
Vol. 11, no. 8
p. 1690

Abstract

Read online

The objective of the paper consisted in determining the effect of macroscale types of NAO, AO, EA, EAWR, SCAND, and AMO atmospheric circulation on changes in water temperature in Polish rivers. The study has made use of a broad body of hydrometeorological materials covering daily water temperature values for 96 water gauge stations located on 53 rivers and air temperature values for 43 meteorological stations. Percentage shares of positive and negative coefficients of correlation of annual, seasonal, and monthly circulation type indices with air and river water temperature were determined, demonstrating the character of teleconnection. Determinations were made of water temperature deviations in positive and negative phases of the analyzed indices from average values from the years 1971−2015, and their statistical significance ascertained. Research has shown that relations between the temperature of river waters in Poland and macroscale circulation types are not strong, however they are noticeable, sometimes even statistically significant, and both temporally and spatially diverse. NAO, AO, EA, and AMO indices are characterized by a generally positive correlation with temperature, whereas SCAND and EWAR indices are characterized by a negative correlation. Research showed a varying impact of types of atmospheric circulation, with their effectiveness increasing in the winter season. The strongest impact on temperature was observed for the positive and negative NAO and AO phases, when deviations of water temperature from average values are correspondingly higher (up to 1.0 °C) and lower (by a maximum of 1.5 °C), and also for the positive and negative SCAND phases, when water temperature are correspondingly lower (by a maximum of 0.8 °C) and higher (by 1.2 °C) than average values. The strongest impact on water temperature in summer, mainly in July, was observed for AMO. The results point to the complexity of processes determining the thermal regime of rivers and to the possibility of additional factors—both regional and local—exerting an influence on their temporal and spatial variability.

Keywords