Nutritional Performance of Five Citrus Rootstocks under Different Fe Levels
Maribela Pestana,
Pedro García-Caparrós,
Teresa Saavedra,
Florinda Gama,
Javier Abadía,
Amarilis de Varennes,
Pedro José Correia
Affiliations
Maribela Pestana
MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE–Global Change and Sustainability Institute, Faculty of Science and Technology, University of Algarve, Campus of Gambelas, Building 8, 8005-139 Faro, Portugal
Pedro García-Caparrós
Department of Agronomy, Higher Engineering School, University of Almeria, Agrifood Campus of International Excellence CeiA3, Ctra. Sacramentos/n, La Cañada de San Urbano, 04120 Almería, Spain
Teresa Saavedra
MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE–Global Change and Sustainability Institute, Faculty of Science and Technology, University of Algarve, Campus of Gambelas, Building 8, 8005-139 Faro, Portugal
Florinda Gama
MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE–Global Change and Sustainability Institute, Faculty of Science and Technology, University of Algarve, Campus of Gambelas, Building 8, 8005-139 Faro, Portugal
Javier Abadía
Plant Biology Department, Estación Experimental de Aula Dei, CSIC, Av. Montañana 1005, 50059 Zaragoza, Spain
Amarilis de Varennes
Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
Pedro José Correia
MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE–Global Change and Sustainability Institute, Faculty of Science and Technology, University of Algarve, Campus of Gambelas, Building 8, 8005-139 Faro, Portugal
Iron is an essential micronutrient for citrus, playing an important role in photosynthesis and yield. The aim of this paper was to evaluate the tolerance to Fe deficiency of five citrus rootstocks: sour orange (S), Carrizo citrange (C), Citrus macrophylla (M), Troyer citrange (T), and Volkamer lemon (V). Plants were grown for 5 weeks in nutrient solution that contained the following Fe concentrations (in µM): 0, 5, 10, 15, and 20. At the end of the experiment, biomass (dry weight—DW), leaf area, total leaf chlorophyll (CHL), and the activity of root chelate reductase (FCR) were recorded. Additionally, the mineral composition of roots (R) and shoots (S) was evaluated. Principal component analysis was used to study the relationships between all parameters and, subsequently, the relations between rootstocks. In the first component, N-S, P-S, Ca-S, Cu-S, Zn-S, Mn-S, Zn-R, and Mn-R concentrations were related to leaf CHL and FCR. Increases in leaf CHL, Mg-R, and DW (shoots and roots) were inversely related to Cu-R, which was shown in the second component. The values obtained were consistent for V10, C15, and C20, but in contrast for S0 and S5. In conclusion, micronutrient homeostasis in roots and shoots of all rootstocks were affected by Fe stress conditions. The Fe/Cu ratio was significantly related to CHL, which may be used to assist rootstock performance.