Heliyon (Jun 2024)

Optimizing inferior vena cava filter design: A computational fluid dynamics study on strut configuration for enhanced hemodynamic performance and thrombosis reduction

  • Byeong-Jun Kim,
  • Chiseung Lee

Journal volume & issue
Vol. 10, no. 11
p. e32667

Abstract

Read online

Background and objective: Inferior vena cava filters have been shown to be effective in preventing deep vein thrombosis and its secondary complication, pulmonary embolism, thereby reducing the high mortality rate. Although inferior vena cava filters have evolved, specific complications like inferior vena cava thrombosis-induced deep vein thrombosis worsening and recurrent pulmonary embolism continue to pose challenges. This study analyzes the effects of geometric parameter variations of inferior vena cava filters, which have a significant impact on the thrombus formation inside the filter, the capture, dissolution, and hemodynamic flow of thrombus, as well as the shear stress on the filter and vascular wall. Methods: This study used computational fluid dynamic simulations with the carreau model to investigate the impact of varying inferior vena cava filter design parameters (number of struts, strut arm length, and tilt angle) on hemodynamics. Results: Recirculation and stagnation areas due to flow velocity and pressure, along with wall shear stress values, were identified as key factors. It is important to find a balance between wall shear stress high enough to aid thrombolysis and low enough to prevent platelet activation. The results of this paper show that the risk of platelet activation and thrombus filtration may be lowest when the wall shear stress of the filter ranges from 0 to 4 [Pa], minimizing stress concentration within the filter. Conclusion: 16 arm struts with a length of 20 mm and a tilt angle of 0° provide the best balance between thrombus capture and minimization of hemodynamic disturbance. This configuration minimizes the size of the stagnation and recirculation zones while maintaining sufficient wall shear stress for thrombus dissolution.

Keywords